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INTRODUCTION 

What is Heparin?: Heparin is a linear polysaccharide common in all animals and 

is known for its anticoagulant properties. Heparin is found in white blood cells and is 

responsible for several biological functions, such as mediating anti-inflammatory 

responses, developmental processes, angiogenesis, and the coagulation cascade1. 

Although some functions have been characterized, much is still unknown about the role 

of heparin in the body. Molecularly, it occurs as a proteoglycan (HSPG) in which two or 

three heparin chains are attached in close proximity to cell surfaces or extracellular 

matrix proteins2.  

Medical uses and side effects: Medically, Heparin is administered as an 

anticoagulant to treat pulmonary embolism3, deep vein thrombosis, or to assist with the 

treatment of myocardial infarction. Heparin is also used before surgery to decrease the 

risk of blood clots. After administration, the therapeutic effects of Heparin are expected 

to take place within minutes4. However, the timing and dosage of administration can be 

dependent on the patient's size and the indicated application. Typically, administration 

begins with an intravenous (I.V.) bolus injection into the blood vessel of choice, followed 

by an I.V. infusion.  

Due to Heparin’s potent ability to bind to other proteins, diffusion of medically 

administered Heparin to untargeted areas can cause serious adverse effects. For 

example, Heparin may increase bleeding or induce skin lesions5. Other side effects of 

Heparin include acute systemic reactions, thrombocytopenia, or hyperkalemia6. 

Thrombocytopenia and hyperkalemia are of strong concern due to the high risk of limb 

loss or death caused by these heparin induced disorders. They are also prime 

examples of positive feedback reactions caused by the binding of Heparin to proteins 

that disturb the homeostasis.  

Heparin Induced Thrombocytopenia (HIT) begins with the binding of Heparin to 

the protein Platelet Factor 4, resulting in an abnormal Immunoglobulin G (IgG) 

antibody7. The IgG antibodies create a complex with heparin and PF4, initiating blood 

clot formations. HIT is a condition characterized by low blood platelet count below 

150,000. It is a severe reaction to Heparin that occurs with even the smallest dosage of 

Heparin. It occurs four to five days after onset of Heparin treatment and leads to limb-

threatening thrombotic complications.  

 Hyperkalemia is another serious side-effect of Heparin treatment. Heparin is a 

potent inhibitor of aldosterone production in the adrenal gland (zona glomerulosa) 

resulting in high levels of potassium in the blood stream8. Like thrombocytopenia, 

hyperkalemia’s onset can be triggered by even the smallest Heparin dosage in 

hypersensitive patients. Common symptoms are heart palpitations, muscle pain, muscle 

weakness, and an abnormal heart rate that can result in cardiac arrest or death.  

 Importance: Heparin has demonstrated great potential in research for long term 

treatment of diseases due to its ability to bind to proteins and regulate chemical 

https://en.wikipedia.org/wiki/Proteoglycan
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pathways. However these same abilities make it dangerous for patients and study 

subjects when Heparin diffuses to untargeted areas. To reduce this risk, it is necessary 

to understand the properties of Heparin such as its diffusion of Heparin through the 

blood vessel walls. This information will assist researchers and physicians alike to better 

regulate Heparin dosage or design ulterior methods of administration.  

 

PROBLEM STATEMENT 

 Blood vessels transport substances such as nutrients, hormones, and oxygen 

throughout the body and allow diffusion into peripheral tissues. Diffusion of a substance 

is dependent on its structure, size, and polarity which can modeled by Fick’s Second 

Law of Diffusion. Modeling of species diffusion from blood vessels allows higher 

accuracy for dosage monitoring, leading to enhanced patient-centered care.  

Currently, clinical practice relies on the pathophysiology of patient at the time of 

injection, to determine the dose of Heparin to reduce its side effects. This method is 

unreliable because the physiological base of the dosage is not well understood. In this 

report, we create a model that approximates the axial diffusion of Heparin through the 

cubital vein with diameter of 1.8x10-3 m, the most common blood vessel used in 

intravenous injections. The model consists of a partial differential equation that is 

iterated over four different scenarios and solved analytically and numerically. 

Concentration profiles of Heparin in the cubital vein are assessed in space axially and in 

time (Figure 1). The dosage modeled was 5,000 units BID (1.48x103 mmol/m3) since it 

is the lowest administered dosage. Because side effects of Heparin diffusion into 

untargeted areas do not appear until 3 to 4 days, a longer modeling period of 27 

hours was chosen. The results of each condition is then compared. Such quantitative 

analysis is intended to be used in conjunction with available patient data in the future to 

determine the correlation between Heparin diffusion and patient outcomes. This will 

help predict the optimal dose of Heparin for each individual medical case.  

 

 
Figure 1. The Cartesian Diagram used for modeling Heparin diffusion through the Cubital Vein. It is 

assumed the injection occurs at the center of the vein and heparin diffuses symmetrically outwards 

towards the vein walls.  
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Scenarios:  

1) Intravenous Bolus with Constant Flux  

2) Intravenous Bolus with Variable Flux 

3) Intravenous Infusion with Constant Flux 

4) Intravenous Infusion with Variable Flux   

 

Parameters:  

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑖𝑜𝑛 𝑜𝑓𝐻𝑒𝑝𝑎𝑟𝑖𝑛: 𝐶𝑜 = 1.48 × 103
𝑚𝑚𝑜𝑙

𝑚3
 

𝐶𝑢𝑏𝑖𝑡𝑎𝑙 𝑉𝑒𝑖𝑛 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟: 𝐿 = 1.8 × 10−3 𝑚 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡: 𝛾 = 32 × 10−3
𝑚𝑚𝑜𝑙

𝑠
 

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡: 𝐷 = 1.2 × 10−12
𝑚2

𝑠
 

𝐹𝑙𝑢𝑥: Φ = 0.48 × 103
𝑚𝑚𝑜𝑙

𝑚3𝑠
 

  𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟: 𝛼 = 5 × 103 𝑚 

 

ASSUMPTIONS 

Below are the listed simplifying assumptions of our model: 

1. The system is rotationally symmetrical therefore can be modeled as a 2-D 

problem and diffusion as a 1-D problem (Figure 1) 

2. For the first scenario, flux is constant over time 

3. Heparin is the only particle in the blood vessel 

4. Diffusion is passive  

5. Our section of blood vessel is small enough that blood flow is insignificant and 

therefore not included in the model.  

6. Time starts from 0 

7. Concentration of Heparin in Blood is Zero 

 

ANALYTICAL AND NUMERICAL SOLUTIONS 

Our model is governed by the diffusion equation: 

 

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
+  𝑄(𝑥, 𝑡) 
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To analytically solve, apply canonical Green’s integrals (Cases 1 and 2): 

∫ 𝐶(𝑥, 0)𝐺(𝑥, 𝑡; 𝑥0,0)𝑑𝑥0 + ∫ ∫ 𝑄(𝑥0, 𝑡0)𝐺(𝑥, 𝑡; 𝑥0,𝑡0)𝑑𝑡0𝑑𝑥0

𝑡

0

 
𝐿

0

𝐿

0

− ∫ 𝐷
𝜕𝐶

𝜕𝑥
(0, 𝑡0)𝐺(𝑥, 𝑡; 0,𝑡0)𝑑𝑡0

𝑡

0

+  ∫ 𝐷
𝜕𝐶

𝜕𝑥
(𝐿, 𝑡0)𝐺(𝑥, 𝑡; 𝐿,𝑡0)𝑑𝑡0

𝑡

0

   

 

C(x,t) is the concentration of Heparin in the axial direction of the cubital vein (Figure 1) 

that is dependent on time, t and location x, L is the distance along the diameter of the 

cubital vein. D is the constant of diffusivity and Q(x,t) is the generation term which is 

nonzero in scenarios 2 and 4. G(x,t;x0,t0) are the Green’s function for flux-flux boundary 

condition: 

𝐺(𝑥, 𝑡; 𝑥0,𝑡0) =  
1

𝐿
+  ∑

2

𝐿
cos (

𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋𝑥0

𝐿
) 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

(𝑡−𝑡0)
∞

𝑛=1
 

Scenario 1: 

In the first scenario, the model takes on the following generation terms, initial 

conditions, and boundary conditions:  

𝑄(𝑥, 𝑡) =  0 

𝐶(𝑥, 0) =  𝛿(𝑡)𝐶0 

−𝐷
𝜕𝐶

𝜕𝑥
(0, 𝑡) =  −𝜑0 

−𝐷
𝜕𝐶

𝜕𝑥
(𝐿, 𝑡) =  𝜑𝐿 

 

Here, the initial condition is a delta dirac function which models a bolus injection. The 

amplitude of the delta dirac function is scaled according to the concentration of the 

Heparin solution to be injected. The constant flux boundary condition models the flow of 

Heparin through the walls of the cubital vein. By applying the Green’s functions, we 

solved the governing partial differential equation under these conditions: 

 

𝐶(𝑥, 𝑡) =  𝐶0 −  
(𝜑0 + 𝜑𝐿)𝑡

𝐿
− ∑

2𝐿

𝐷(𝑛𝜋)2

∞

𝑛=1

(𝜑0 + (−1)𝑛𝜑𝐿) cos (
𝑛𝜋𝑥

𝐿
) (1 − 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

𝑡
) 

 

The step-by-step analytical solution and its graph are found in the appendix. Below is the 

numerical solution obtained by using MATLAB’s pdepe solver which resembles the 

analytical solution as expected.  
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Figure (2): Numerical solution obtained through MATLAB PDEPE for scenario 1 

 

Scenario 2: 

For the second scenario, the model takes on the following generation terms, 

initial conditions, and boundary conditions:  

𝑄(𝑥, 𝑡) =  𝛾 

𝐶(𝑥, 0) =  0 

−𝐷
𝜕𝐶

𝜕𝑥
(0, 𝑡) =  −𝜑0 

−𝐷
𝜕𝐶

𝜕𝑥
(𝐿, 𝑡) =  𝜑𝐿 

 

In this second scenario, the initial condition is set to zero and the generation term is set 

to a value, gamma. The generation term models the constant amount of Heparin that 

enters the cubital vein during I.V. infusion. As before, the constant flux boundary 

condition models the flow of Heparin through the walls of the cubital vein. By applying 

the Green’s functions, we solved the governing partial differential equation under these 

conditions: 

 

𝛾𝑡 −  
(𝜑0 + 𝜑𝐿)𝑡

𝐿
− ∑

2𝐿

𝐷(𝑛𝜋)2

∞

𝑛=1

(𝜑0 + (−1)𝑛𝜑𝐿) cos (
𝑛𝜋𝑥

𝐿
) (1 − 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

𝑡
) 
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The step-by-step analytical solution for the second scenario and its graph are found in 

the appendix. Below is the numerical solution obtained by using MATLAB’s pdepe solver 

which resembles the analytical solution as expected.  

 

 
Figure (3): Numerical solution obtained through MATLAB PDEPE for scenario 2 

 

Scenario 3: 

For the third scenario, the model takes on the following generation terms, initial 

conditions, and boundary conditions:  

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
+  𝑄(𝑥, 𝑡) 

𝑄(𝑥, 𝑡) =  0 

𝐶(𝑥, 0) =  𝛿(𝑡)𝐶0 

−𝐷
𝜕𝐶

𝜕𝑥
(0, 𝑡) =  −𝜑0𝑒−𝛼𝑡 

−𝐷
𝜕𝐶

𝜕𝑥
(𝐿, 𝑡) =  𝜑𝐿𝑒−𝛼𝑡 

 

Here, the initial condition is identical to that of the first scenario: a scaled delta dirac 

function that models a bolus injection at the appropriate concentration. However, unlike 

the first scenario, which had constant flux boundary conditions, this scenario includes 

time-varying exponentially decaying flux. This boundary condition attempted to 

recapitulate a more realistic behavior. In this case, the rational is that the flux of Heparin 
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is modeled to be at maximum when bolus injection occurs because Heparin 

concentration is high, and then decreases over time as Heparin concentration also 

decreases. The solution to the governing partial differential equation was graphed using 

the numerical solution obtained by MATLAB’s pdepe solver:  

 

 
Figure (4): Numerical solution obtained through MATLAB PDEPE for scenario 3 

 

Scenario 4: 

For the fourth and last scenario, the model takes on the following generation 

terms, initial conditions, and boundary conditions:  

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
+  𝑄(𝑥, 𝑡) 

𝑄(𝑥, 𝑡) = 𝛾 

𝐶(𝑥, 0) =  0 

−𝐷
𝜕𝐶

𝜕𝑥
(0, 𝑡) =  −𝜑0𝑒−𝛼𝑡 

−𝐷
𝜕𝐶

𝜕𝑥
(𝐿, 𝑡) =  𝜑𝐿𝑒−𝛼𝑡 

 

Here, the initial condition is identical to that of the second scenario in that the value is 

zero and like the third scenario, this fourth scenario includes time-varying exponentially 

decaying flux. The solution to the governing partial differential equation was graphed 
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using the numerical solution obtained by MATLAB’s pdepe solver:

 
Figure (5): Numerical solution obtained through MATLAB PDEPE for scenario 4 

 

DISCUSSION 

In order to visually compare all four scenarios, a plot was created to show the 

Heparin concentration values over time at the middle of the cubital vein as shown in 

figure (X). Overall, scenarios 1-3 show a similar characteristic: for large values of time, 

the concentration of Heparin is low.  

In scenario 1 which modeled a bolus injection of Heparin with a constant flux 

boundary condition, the concentration within the middle of the cubital vein reflected that 

of the amplitude of the delta dirac function. Since such an impulse occurs only for a 

short period of time, and the flux condition allows for the Heparin to exit the system, the 

concentration of Heparin declined over time.  

The initial condition of scenario 3 included the same delta dirac function, but its 

boundary condition was defined as an exponentially-decaying flux. The difference 

observed between scenario 1 and 3 is that the slope of the concentration over time in 

scenario 3 declines at a slower rate than that of scenario 1. This is expected. After the 

impulse of Heparin, the Heparin does exit the system, but as the flux decreases, the 

rate of which Heparin leaves the system also decreases.  

In scenario 4, which modeled an I.V. infusion with a constant generation term 

and an exponentially-decaying flux, the concentration of Heparin over time seemed to 

increase without reaching a steady state. This is due to the fact that the Heparin is 
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constantly being added to the system, but as the flux decays, Heparin does not leave 

the system and thus, it accumulates indefinitely, which is physiologically unrealistic.  

There are several limitations in our model due to assumptions to simplify the 

scope. Neglecting the flow in the model has the largest impact on the outcomes of the 

scenarios, as the concentration of the species decreases axially along the vessel as 

well as radially outward. The use of Cartesian coordinates rather than cylindrical also 

limits the model’s accuracy, and will be implemented in the future. Additionally, the 

exponentially decaying flux term would be more accurate as a coupled equation rather 

than the somewhat arbitrary scaling term, . We also assumed that all heparin will be 

absorbed by the body, although some will be cleared before it is effectively metabolized.

 In order to increase the model’s accuracy, we will implement cylindrical 

coordinates to more effectively model the radial diffusion of heparin. Future 

development of this model would be well served to address the limitations above as 

well, such as addressing flow and coupling the flux to the concentration. Figure 9 in the 

appendix illustrates the model we will be working with to model radial diffusion of 

heparin.  

 

 

 
Figure (6): Numerical solutions as functions of concentration and time at the middle of the cubital vein as 

obtained through MATLAB PDEPE for scenarios 1-4 
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APPENDIX 
 

 

Step-by-step analytical solution for scenario 1:  

Governing equation: 

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
+  𝑄(𝑥, 𝑡) 

Boundary conditions, initial conditions, and generation term: 

𝑄(𝑥, 𝑡) =  0 

𝐶(𝑥, 0) =  𝛿(𝑡)𝐶0 

−𝐷
𝜕𝐶

𝜕𝑥
(0, 𝑡) =  −𝜑0 

−𝐷
𝜕𝐶

𝜕𝑥
(𝐿, 𝑡) =  𝜑𝐿 

Applying conditions to Green’s integrals: 

A 

∫ 𝛿(𝑡0)𝐶0 [
1

𝐿
+ ∑

2

𝐿

∞

𝑛=1

cos (
𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋𝑥0

𝐿
) 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

(𝑡−𝑡0)
] 𝑑𝑥0 

𝐿

0

 

B 

− ∫ 𝜑0 [
1

𝐿
+ ∑

2

𝐿

∞

𝑛=1

cos (
𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋𝑥0

𝐿
) 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

(𝑡−𝑡0)
] 𝑑𝑡0

𝑡

0

 

C 

+ ∫ −𝜑𝐿 [
1

𝐿
+  ∑

2

𝐿

∞

𝑛=1

cos (
𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋𝑥0

𝐿
) 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

(𝑡−𝑡0)
] 𝑑𝑡0

𝑡

0

 

Solving for each integral: 

A 

∫ 𝛿(0)𝐶0 [
1

𝐿
+ ∑

2

𝐿

∞

𝑛=1

cos (
𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋𝑥0

𝐿
) 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

𝑡
] 𝑑𝑥0

𝐿

0

 

= ∫
𝛿(0)𝐶0

𝐿

𝐿

0

𝑑𝑥0 + ∫ 𝛿(𝑡0)𝐶0

2

𝐿
∑ cos (

𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋𝑥0

𝐿
) 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

𝑡

∞

𝑛=1

𝑑𝑥0

𝐿

0

} = 0 

= 𝐶0 

B 

− ∫ 𝜑0 [
1

𝐿
+ ∑

2

𝐿

∞

𝑛=1

cos (
𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋(0)

𝐿
) 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

(𝑡−𝑡0)
] 𝑑𝑡0

𝑡

0

 

 

= −
𝜑0

𝐿
𝑡 −  

2𝜑0

𝐿
∑ cos (

𝑛𝜋𝑥

𝐿
) 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

𝑡

∞

𝑛=1

∫ 𝑒
𝐷(

𝑛𝜋
𝐿

)
2

𝑡0

𝑡

0

𝑑𝑡0 
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= −
𝜑0

𝐿
𝑡 −  ∑

2𝜑0𝐿

𝐷(𝑛𝜋)2
cos (

𝑛𝜋𝑥

𝐿
)

∞

𝑛=1

(1 − 𝑒
−𝐷(

𝑛𝜋
𝐿

)
2

𝑡
) 

C 

∫ −𝜑𝐿 [
1

𝐿
+  ∑

2

𝐿

∞

𝑛=1

cos (
𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋𝐿

𝐿
) 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

𝑡−𝑡0] 𝑑𝑡0

𝑡

0

 

= −
𝜑𝐿𝑡

𝐿
− 

2𝜑𝐿

𝐿
∑

2

𝐿

∞

𝑛=1

(−1)ncos (
𝑛𝜋𝑥

𝐿
) 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

𝑡
∫ 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

𝑡0

𝑡

0

𝑑𝑡0 

= −
𝜑𝐿𝑡

𝐿
− ∑

2𝜑𝐿(−1)n

𝐷(𝑛𝜋)2

∞

𝑛=1

cos (
𝑛𝜋𝑥

𝐿
) (1 − 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

𝑡
) 

Combining each integral solution: A+B+C= 

𝐶(𝑥, 𝑡) =  𝐶0 −  
(𝜑0 + 𝜑𝐿)𝑡

𝐿
− ∑

2𝐿

𝐷(𝑛𝜋)2

∞

𝑛=1

(𝜑0 + (−1)𝑛𝜑𝐿) cos (
𝑛𝜋𝑥

𝐿
) (1 − 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

𝑡
) 

 

 

 
Figure (7): Graph of the analytical solution for scenario 1. 
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Step-by-step analytical solution for scenario 2:  

Governing equation: 

 

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
+  𝑄(𝑥, 𝑡) 

Boundary conditions, initial conditions, and generation term: 

𝑄(𝑥, 𝑡) =  𝛾 

𝐶(𝑥, 0) =  0 

−𝐷
𝜕𝐶

𝜕𝑥
(0, 𝑡) =  −𝜑0 

−𝐷
𝜕𝐶

𝜕𝑥
(𝐿, 𝑡) =  𝜑𝐿 

Applying conditions to Green’s integrals: 

𝐴 

∫ ∫ 𝛾 [
1

𝐿
+ ∑

2

𝐿

∞

𝑛=1

cos (
𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋𝑥0

𝐿
) 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

(𝑡−𝑡0)
]

𝑡

0

𝑑𝑡0𝑑𝑥0 
𝐿

0

 

 

B 

− ∫ 𝜑0 [
1

𝐿
+ ∑

2

𝐿

∞

𝑛=1

cos (
𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋𝑥0

𝐿
) 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

(𝑡−𝑡0)
] 𝑑𝑡0

𝑡

0

 

C 

+ ∫ −𝜑𝐿 [
1

𝐿
+  ∑

2

𝐿

∞

𝑛=1

cos (
𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋𝑥0

𝐿
) 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

(𝑡−𝑡0)
] 𝑑𝑡0

𝑡

0

 

Solving for each integral: 

A 

∫ ∫
𝛾

𝐿
𝑑𝑡0𝑑𝑥0 +

𝑡

0

𝐿

0

∫ ∫ ∑
2𝛾

𝐿
cos (

𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋𝑥0

𝐿
)

∞

𝑛=1

𝑡

0

𝐿

0

𝑒
−𝐷(

𝑛𝜋
𝐿

)
2

(𝑡−𝑡0)
𝑑𝑡0𝑑𝑥0 

= 𝛾𝑡 + ∫ ∫ ∑
2𝛾

𝐿
cos (

𝑛𝜋𝑥

𝐿
) cos (

𝑛𝜋𝑥0

𝐿
)

∞

𝑛=1

𝑡

0

𝐿

0

𝑒
−𝐷(

𝑛𝜋
𝐿

)
2

(𝑡−𝑡0)
𝑑𝑡0𝑑𝑥0} = 0 

= 𝛾𝑡 

B and C are same as Scenario 1 

Combining each integral solution: A+B+C= 

𝛾𝑡 −  
(𝜑0 + 𝜑𝐿)𝑡

𝐿
− ∑

2𝐿

𝐷(𝑛𝜋)2

∞

𝑛=1

(𝜑0 + (−1)𝑛𝜑𝐿) cos (
𝑛𝜋𝑥

𝐿
) (1 − 𝑒

−𝐷(
𝑛𝜋
𝐿

)
2

𝑡
) 
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Figure (8): Graph of the analytical solution for scenario 2. 

 

 
Figure (9): Diagram of Heparin radial diffusion utilizing Radial coordinates 


